. AD-A161 351

.

HENEEN.

HENNEN
[N

SPECIAL PURPOSE COMPUTER ARCHITECTURE FOR

Lw

FRACTORIZATION OF PARTITIONED SYSTENS(U) lLLglgIS UNIV
s

AT URBANA COORDINATED SCIENCE LAB K I LUI

R-1015 NO0@14-84-C-0149

nc

S
@

Wi

N

N

A I R -



-

s N8 M2.
Jli £
-

K el =
= |
L2 2 e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963 - A




— T

LaR

vy

. i

REPORT R-1015 AUGUST, 1984 UILU-ENG 84-2209

« WCOORDINATED SCIENCE LABORATORY

(

SPECIAL PURPOSE
COMPUTER ARCHITECTURE
FOR LU FACTORIZATION
OF PARTITIONED SYSTEMS

AD-A161 351

NLIMITED. ' o

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

11 18-85 03g |




A i M hatts
b diate e A A

_IINCLASSIFIED
"ECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE

12 AGPOAT SECURITY CLASSIFICATION 10. AESTRICTIVE MARKINGS

, UNCLASSIFIED None
2n. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
I N/A Approved for public release,
2. OECLASSIFICATION/DOOWNGRADING SCHEDULS distribution unlimited
N/A
ansonmua OARGANIZATION REPOAT NUMBEAR(S) 5. MONITORING ORGANIZATION REPORT NUMBEA(S)
- R-1015 UILU-ENG 84-2209 N/A
") Sa. NAME OF SRRFOAMING ORGANIZATION OPFICE SYMBOL |7a NAME OF MONITORING ORGANIZATION
Coordinated Science Laboratory| (//essiesbie) Office of Naval Research
University of Illinois N/A ,
g8e. ACORESS (City. Stace and ZIP Code) 7o, ADORESS (Clty, Stete end ZIP Code)
l University of Illinois at Urbana-Champaign 800 N. Quincy Street
b 1101 West Springfield Ave. Arlington, VA 22217
. Urbana, IL 61801
Fnam OF FUNDING/SPONSORING 8B OFFICE SYMBOL |9, PROCUREMENT INSTRUMENT IDENTISICATION NUMBER
CRGANIZATION Joint Services (11 applicebis) .
Electronics Program N/A 1
'Iu AQORESS /City, State and ZIP Code) 10. SOUACE OF RUNDING NOS.
; 800 N. Quincy Street e EMENT No. il TNor wo.:o‘.‘mf
C‘- Arlington, VA‘ 22217 N/A N/A N/A N/A
Ln. TITLE tinciude Secunty Clasmficstion) SPECIAL, PURPOSE COMPURER
. ARCHRITECTURE FOR LU FACTORI SYSTEMS.
'_L‘lz."HSONAL AUTHQR(S) LUI, KIN-MAN IVY
. ¥13a TYPE OF REPOAT Intrarim | 135 TIME COVERED 14. DATE OF REPQAT (Yr., Mo.. Dey) 15. PAGE COUNT j
i’ Technical, final rmom Aug. 183 ToAug. ‘84 August 1984 .96
16. SUPPLEMENTARY NOTATION
N/A
. COSATI cODES 18, SUBJECT TERAMS (Condnue on reverse if necessary and identify by biock numoer)
£1€L0 GROUS SUS. GA. Integrated circuits, simulation; LU factorizaion; partitione
‘ Systems; systolic arrays; wavefront array processors;
- Parallel Processing.
i 19. ABSTRACT /Continue on reverse i/ nacessary and identify by Mock number;
l The simulation of large-scale integrated circuits requires a considerable amount of
.~ computation time using the currently available circuit simulation programs like SPICE. One "
* of the bottlenecks of these simulation programs is in solving these systems of linear .j-:]
J equations using LU factorization. This thesis explores the idea of a nested clustering =
algorithm to partition the matrices into bordered block diagonal form in order to partition’ ;1
.. the matrices into bordered block diagonal form in order to facilitate parallel processing. :.{
' In addition, an architecture combining both the systolic array and the wavefropnt array “
¥ processors is proposed to perform the LU factorization of the partitioned system using highly :‘_-‘
- concurrent parallel processor arrays. :;:
\ d
[ .::
- 720 ISTRIBUTION/AVAILABILITY QF ABSTRACT 21. A@STRACT SECURITY CLASSIFICATION N
b Uncrassirigo/unLimites T same a3 asr T oTic users O UNCLASSIFIED ;
_¥22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPMONE NUMBER 22c. OFFICE SYMBOL N
ol tinciude Ares Codes N
£
] -.
am— }:'1
0D FORM 1473, 83 APR EDITION OF 1 JAN 7318 OBSOLETE. UNCLASSIFIED b
4

o,

“ ’ « SECURITY CLASSIFICATION OF THIS PAGE

.1
c0

ISR AL N . P . . e e R S -
Al el AP R P S AR AL N L’J'L'L“.‘L—‘A—'l !_A" { "




........

SPECIAL PURPOSE COMPUTER ARCHITECTURE
FOR LU FACTORIZATION OF PARTITIONED SYSTENS

BY
KIN-MAN IVY LUI

B.S., University of Californmia, Berkeley, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana—Champsign, 1984

Urbana, Illinois




The simulation of large—scale integrated circuits requires a
considerable a-oint of computation time using the currently available
circuit simulation programs like SPICE. One of the bottlemecks of
these simulation programs is in solving these systems of linear equa-

tions using LU factorization., This thesis explores the idea of a

nested clustering algorithm to partition the matrices into bordered

" block diagonal form in order to facilitate parallel processing. In

addition, an srchitecture combining both the systolic array and the
wavefront array processors is proposed to perform the LU factoriza-
tion of the partitioned system using highly comcurreant parallel pro—
Cessor arrays.
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With the advances in VLSI technology, there is tremendous demand
for efficient circuit simulators and other computer—aided design
tools. One of the factors limiting the design time of VLSI circuits
is the slowness of circuit simulation programs. Conveantional circuit
simulators , for example, SPICE [18], were designed initially for the
cost-effective analysis of circuits containing a few hundred transis-
tors or less. Because of the need to verify the performance of
larger circuits, many users have used programs like SPICE (18] and
have successfully simulated circuits containing thousands of transis—
tors despite the cost. Because these circuit simulation programs are
slow, designers are forced to use less accurate models and to make
assumptions during the simulations inm order to save computatiom cost.
At the circuit level, the electrical behavior of the design is
modelled in terms of algebraic-differential equations. The use of
implicit integration methods, together with modified Newton iterative
methods for solving the algebraic-differential equations representing
the circuit model, has been found to give reliable numerical solu-
tions, and has thus been implemented in many circuit simulators, such

as SPICE [18].

A number of approaches have been used to improve the performance
of conventional circuit simulators for the analysis of large cir

cuits. The time required to evaluate complex dev%ce model equations

...................................
.................

-y -

€ - v-v

.......
.................



-----------

has been reduced by using table—lookup models [19]. Technigues based
& on special purpose microcodes have been investigated for reducing the
' time required to solve sparse linear systems arising from the linesr— ‘f-
ization of the circuit equation [20]. Node tearing techniques [5,15]

have slso been used to exploit circuit regularity by bypassing the

DA R

solution of subcircuits whose state is not changing and to exploit
the vector—-processing capabilities of high performance computers such
as the Cray-1 used in the simulation program (LASSIE ([21]. The
advent of VLSI technology has made the cost-effective design of spe-

cial purpose machines possible. Examples of these machines are the

i:
S
g
[.

Yorktown Simulation Engine (YSE) for logic simulation [22], systolic N
arrays [4] and the wavefront array processors [2]. Special purpose
machines have also been proposed for the solution of linear systems
of equations [2]. Most of these machines 1limit the size of the i
operand matrix except for the onme designed by Pottle [7]. Special
matrix structures such as the Bordered Block Diagonal Form (BBDF) are

discussed in Blossom [1].

The procedure involved in a standard circuit simulation is shown
in Fig. 1 [16]. The majority of the time spent to run a circmit
simulation can be lumped into two categories: the time required to
solve the system of sparse linear equations, SOALVE (steps(7) and (8))

and the time required to form the entries of A and b in Ax=b, FORM

'Q" ‘I

(steps(S) and (6)). These two steps are repeated over and over

again, As seen in Fig. 2, for small circuits (N ¢ 20), the majority

of the solution time is spent performing FORNM. However, when the




Fig. 1.

Circuit simulator flow diagram for transient analysis [16].
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size of the circuit grows, anm increasing percentage of the time is

ﬁﬂ speat in the SOLVE phase for sll standard circuit simulators running
on conventional computers., This thesis proposes a design of a spe-
ﬂ- cisl oparallel processor to be used in performing the steps involved

. in SOLVE.

There are two methods for solving large systems of linear equa-

tions. One method is to use LU factorization, forward and backward

_ substitutions on the entire matrix to arrive at the solutions in one
" pass. The other method is to use an indirect relaxation method where
certain solutions are guessed at on the first iteration. The new

solutions are then found and the process is repeated until the solu-

tions converge., For most circuits, the fraction of nodes which are

changing their voltage values at a given point in time decreases as
the circunit size increases. For circnits containing over 500 MDS-
FETS, fewer than 20 percent of the node voltages change significantly
over a simulation time step., Circuit simulators exploit this time
sparsity or latency by wusing device—level or block—-level bypass
schemes, In a device—level bypass scheme, if the terminal voltages
and branch currents of a circuit element do not change significantly

from the previous iteratiom, its contributions to A and b in Ax=b are

LR P R
PR

not re—evaluated, and the values computed during the previous itera-

tion are used. In the block-level bypass, both the matrix element

‘i evaluation and the node solution steps are bypassed for each block of

inactive connected circuit elements.
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The indirect method is suitable for large MDS digital integrated
circuits., However, for nonlinear analog circuits or digitsl cirzcuits
with floating capacitances, the solutions are not guaranteed to con-
verge, or if they do converge, the convergence rate is slow [16].
Thus, the direct method is more suitable for analyzing these cir-

cuits.

The types of circuits that are analyzed are usually very large,
with thousands of nodes. Although sparse matrix techniques have been ;3
found to be computationmally efficie;t. psrtitioniné the system matrix g
into a bordered-block diagonal form has been suggested as one way -
where parallel processing could be used to speed up circuit simula—- -
ggon [5]. Another approach could be the use of systolic and wave- ‘

front array processors [2] sfter possibly ordering the matrix in

band form. However,the applicstion of systolic arrays and wavefroat

Sl |

array processors to the parallel solution of bordered block diagonmal

partitioned matrices has not yet been investigated. The purpose of

.
y‘.,‘r"u

this thesis is to propose a systolic wavefront array architecture for

A

LU factorizatica of partitionsd systems, The architecture is also
compared to other parsllel architectures for evaluation purposes.
Using partitioning techniques, the circuit matrices may be ordered
into bordered block diagonal form (BBDF) [5]. Bordered block diago- v
nal matrices have the form shown in Fig. 3. The circuit can be .

divided into subcircuits which are connected together by a relatively

small number of nodes. Some heuristic tearing schemes [14] on bhow

the reordering can be done have been publishked. However, to obtain
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maximum concurrency, a8 nested form of the clustering algorithm is
proposed in this thesis to reorder the nodes. In this approach, the o
entire circuit is first divided into two subcircuits in the BBDF
form. Eacil of the two subcicuits is further divided into two subecir
cuits 1in BBDF in 2 recursive manner. This procedure continues until
each subcircuit is approximately the minimum size allowed. LU fac- -
torization of the differeant subcircuits can then be carried out in
parallel. However, the synchronization of the solutions at the

interconnection level is a problem that needs careful considerationm.

YTV WY YV Y

LU factorization involves repetitive computation on a large set
of data. It involves a matrix multiplicationmsubtract operation -
which is a compute-bound problem, For matrices that are f£full, a |
great deal of concurrency can be achieved with cost—effectiveness on

' single-instructionmultiple-data (SIMD) machines because of the regu- -

L

lar structure of the operations performed in the algorithm. However,
as the matrix becomes sparse, it is very inefficient to use the same
‘ technique and, in case of parallel processing, the need for unstruc-
[ tured computations is too complicated for cost effective solutions on
’ SIMD machines. This is because the LU factorization itself involves ;i

‘ s great deal of dats dependencies which lead to moderate parallelism.

The alternative architecture is multiple—instructiommultiple-
data stream (MIMD). However, the need for synchronization of data,

‘ the smount of overheads allotted for arbitration between processors

o e e o

snd/or memory conflicts usually degrade the performance. Thus, SIMD W

architecture is chosen for discussion.




The performance evaslustion between the different types of archi-
~ tectures for LU factorization is based on the following main issues:
1. concurrency achieved by the machine
. 2, memory access and I/0 time

3. synchronization of data

4. coatrol complexity

5. bardware vs. software tradeoff of the algorithm

6. performance-cost sffectiveness

The thesis is organized as follows. In Chapter 2, the steps

- involved in LU factorization are clearly defined and explained, fol-

- lowed by a study of genersl purpose and special purpose architectures

for parallel oprocessing. In Chapter 3, partitioned systems are

solved in an implementation having both the characteristics of the

systolic array and the wavefront method. Chapter 4 shows how the

entire system is configured using the direct method of solving the

matrices, wheress Chapter 5 discusses the configuration using an

indirect Gauss—Seidel method. Chapter 6 is the conclusion of the

thesis and suggests future direction of research. The block diagram

of a OMOS processing element is given in the Appendix. Such a pro-

coessing element can form a cell in a systolic array.
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2.1. Definition of LU Factorization
The problem that this paper concentrates on is the LU decomposi-
tion of large matrices which occurs in the solution of linear systems
of equations. To solve the problem Ax = y, the matrix A is first -
decomposed into the product of a lower triangular (L) and an upper =
triangular (U) matrix, i.e., A= LU, Such an LU decomposition is
unique if and only if A is strongly nomsingular [10]. Then s forward
substitution step is performed where z is determined by solving Lz = T'
2 The solution, x , can then be obtained by solving Ux = z, This
is referred to as the direct method for solving linear systems of
R [
equations. E:
Crout’s slgorithm is one of the methods used in the decomposi- -
tion, It is written in Pascal as follows: i
=
For i:= 1 to SIZE do begin .
for j:= i+1 to SIZE do
l[iuj] = ‘[i.j] /a[ipi];
for k:= i+l to SIZE do
for w:= i+l to SIZE do
alk,v] := alk,v] - alk,i] * ali,w]; .
end; o

where it is assumed that at every step, ali,i] is not O,

The efficiency of evaluating the inner loop in the above algo-

rithm can be achieved through parallel processing of the machine and N
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through the choice of a good algorithm, The multiplication can be
speeded up by special purpose hardware whereas the addition can also

be speeded up by faster memories.

This slgorithm can be implemented either in the software of gen—
eral purpose machines or in the hardware of special purpose machines.
The systolic srray [4] and the wavefront array [2] processor are two
different hardware implementations of the algorithm. The basic

difference between the two architectures is that systolic arrays use

a synchronous timing scheme whereas the wavefront array processors

use a self-timed handshaking scheme. Their advantages and disadvan-

tages will be compared in the following sections.

For both partitioned and non-partitioned matrices, there are two
differeat classes of methods used for solving linear systems of equa-
tions, One of them is a direct method in which the results are com—
puted in sequence in one pass through the hardware. The other method
is an indirect method such as a relaxationbased Gauss—-Seidel method.
In this method, an initisl guess is made for the valuss of the inter-
connection nodes in the first pass in order to solve for the values
of the subcircuit nodes. The new values of the intercomnection nodes
are then compsred with the previous guess. The whole procedure is
repested until the computed values converge. Latency [5] can be
explored in this method so that only certain subcircuits need be
spdated after each iteration., If the solutions of these subcircmits
are not within a specified tolerance, more iterations are needed.

This procedure should reduce the complexity of evaluating partitioned
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systems as will be seen in the next chapters; but is recommended to
be used when the iteration process is expected to converge reasonably

fast.

These two methods are discussed in the following chapters after

a8 hardware scheme is chosen for the LU factorization array.

2.2. GENERAL PURPOSE vs. SPECIAL PURPOSE ARCHITECTURE

2.2.1. General Purpose Architecture

The main advantage of general purpose machines is the flexibil-
ity they offer. Different operations, algorithms, sizes of matrices
and sparsities of matrices can be evaluated by changing the software
program, If a certain algorithm is chosen, the LU factors of hif—
ferent matrices can be computed with only very slight modifications,
e.8., changing certain parameters or adding several subroutines to
handle sparsity. However, performance is sacrificed for this flexi-
bility. A great deal of buffering, I/O and memory access and execu-
tion overheads result. A more complicated instruction set must be
implemented in general purpose machines for various applications.
Additional time is needed to decode these instructions and extra
hardware and software must be incorporated as well to implement these
instructions. There is also the data-routing problem to get the
sequential data into and out of parallel arrays. This operation

requires complex address calculations which are expensive on general

purpose machines.

bt
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i. Another disadvantage is that with the fixed word length in the
) machine, rounding errors in algebraic processes, if not properly conm
o trolled, may lead to unrelisble solutions. Special purpose machines
{ ] can be designed with very good numerical coatrol for these scientific

computations. This can be achieved with special hardware for pivot-

ing [6] so that the denominators of the divisions during LU factori-
zation are always the largest numbers along the columns. This is
x usuaslly done in the software of general purpose machine and is a

time~consuming process.

The fact that fast general purpose machines are complicated to
design and are usually very expensive calls for the design of special
purpose machines that can be connected to an existing and relatively

inexpensive host machine for fast numerical computation.

2.2.2., Special Purpose Architectunre

The hardware cost and size of both special and general purpose
machines are relatively insignificant compared to the sof tware cost.
However, the design cost of special purpose processors is nusually
much less than general purpose processors. A special purpose machine
usually consists of simple processors of the same kind comnected by a
network of iocal and regular interconnects. Extensive concurrency
can be achieved if the algorithm is designed to introduce high
degrees of pipelining and multiprocessing. Data can be routed to the
ia appropriate processor directly from memory to minimize the memory
access time, which is the bottleneck of most algorithms. Thus, mul-

) tiple computations can be performed per 1/0 access.
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ARSI AU R AR A A B0 0 2 T I

AR I T

........

PER A TN

e L

LAY v v e e s oy .'
«.-A"._’\_a._"'.g :. DL S L’.‘ f

"
Y

:

-4




P Ar el i SR 4

14

The bottleneck of using specisl purpose mesh connected proces— -
sors is the time wasted in interprocessor data movement between the
special purpose processors and the host. However, the computation
can usually be dome faster than general purpose machines. Less over—
heads are involved in decoding instructions and buffering because the

architecture is geared only towards the computation needed.

3 One disadvantage of special purpose machines is their inflexi-

bility. If a different faster algorithm for LU factorization is : B

# needed, the whole machine has to be redesigned and rewired. Also, in =
special cases, for example, sparse matrices which cannot be ordered

- in the block diagonal form may require complicated hardware circuitry

in the special purpose machine as opposed to changing the software

programs in the general purpose machine. Thus, there is a hardware -

3 versus software tradeoff between the two implementations.

! Because of the inflexibility of special purpose processors, a t
P
t well designed algorithm is an important starting point. However, a

good algorithm for VLSI implementation may not necessarily be one

requiring minimal computation. VLSI implementation is preferred for v f?

special purpose processors to reduce difficulties in reliability,
performance ;nd heat dissipation that arise from many SSI and MSI
components. VLSI technology enables faster communication and more
accurate system clocking due to the effect of scaling all components
to several transistors and several metal and poly lines. VLSI also
enables more modularity and programmability because of the cost-

effectiveness of the design.
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l In summary, the criteria for special purpose machines are:
1, The design must be implemented by only a few different types of
simple cells to cut down on design cost.
‘" 2. Its architecture must be based on a simple and regnlar data and
: control flow that can be connected by a network with local and reg-
ular interconnections.
3. It must fully utilize pipelining and multiprocessing. Several
data stresms can move at a constant velocity over fixed paths in

the network, interacting at cells where they meet.

4. A large number of cells are active at one time so that computa- E
tion speed can keep up with data rate. g
5. The simple cells are identical and connected in a regular ]
il fashion to increase modularity and extensibility for different :f

matrices,

Considering the above advantages and disadvantages, two dif-

v R
o gt g g gt

ferent multiprocessor arrays, the systolic array and the wavefroat

array processors, are compared for their effectivenmess in parallel

",
P

processing,
2.3. Special Purpose Architecture

2.3.1. Systolic Array Processors J

:lf The systolic array is chosen as the special purpose machine for N

‘.
P

discussion because it satisfies all the criteria 1listed for

—
® v v .
—atla A

performance/cost effective special purpose machines. Also, systolic

)

LTt
daal & a A h A

jf arrays facilitate VLSI implementation by encouraging modular design

¢ —
.
N
™




| b e 2l A2 A A o v AT a Sl g Sadl S il Mk aath At At St S SR S DAt At BRI TN A I e B S At A A
9 A - - - PR . - PR

\\.

o

. 16
E and local communication whereas many other special purpose machine;
:} that have been proposed [7,10] usually require LSI/MSI parts with

LS
., 9,

< massive controls and complicated hardware.

g

The term ’‘systole’’ means a rhythmically recurrent contraction,

especially the contraction of the heart Y which the blood is forced

}
.
b
v,
R

onward and circulation kept up. This is analogous to the systolic

array idea.

A systolic array processor consists of an array of simple pro-

cessors connected together locally with inputs and outputs conmected
to a bus which is controlled by a host computer. The systolic system
shythmically computes and passes data through the system. All the .
inputs in the systolic cell move to the adjacent processor of the "
cell during each beat., The computation is then dome rhythmically
(i.e., depending on the beat) and the result is shifted as input to

the next <cell in the next beat. This is the basic data flow of the

architecture,

According to S.Y.Kung [13], a systolic array must have the fol-
lowing properties:
1, Synchrony:_The data transfer and computations must be controlled
by a global clock.
2. Regularity: The array must consist of modular processing elements
with regular and spatially 1local interconnections. Moreover, the
ne twork must be extendable.

3. Temporal Locality: At least one unit time delay must be allotted

sO0 that signal tramsactions from one node to the next can be

il M

MY
. e te
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completed.

4. Linear-rate Pipelinability: The array must achieve an O(n)

speedup, where n is the number of processing elements.

S.Y. Kung [13] has also devised a systematic way of systolizing
an algorithm. A signal flow graph (SFG) is constructed to represent
the input and output relationships of an algorithm, Thea the basic
operation module is selected. After that, two cut-set (temporal)
localization procedures are applied:

Rule (i): Time—Scaling: all delays may be scaled by s single positive
integer.

Rule (ii): Delay-Transfer: advance k time units on all the outbound
edges and delay k time units on the inbound edges, and vice versa.

In the final step, combine the delay of the operation modules with
the m&dnle operation to form s basic systolic element. All the extra

delays will be modeled as pure delays without operations.

The signal flow graph for LU decomposition is shown in Fig. 4.

Its corresponding systolic array is shown in Fig. 5. The array is
organized like a homeycomb in a rhombus shape. The following func-
tions are performed by each cell:

Aout = Ain - Lin * Uin

Uout = Uin or Ain (at the boundary)

Lout = Lin or Ain/Uin (at the boundary)
The number of cells needed in this topology is equal to the number of

elements in a full matrix, e.g., for a full 4 x 4 matrix, 16 cells

are needed., For a banded matrix, the number of cells needed is the

vl
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Fig. 4. (a) An SFG for LU decomposition. (b) The detailed diagram )
of the processing nodes [14].
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width of the first row times the height of the first column of the
matrix. Only 1/3 of the cells are performing computation at each
clock cycle while all of them are actively shifting data of some

sort,

Because it is difficult to comtrol the pipeline of systolic
arrays, Kai Hwang [6] has proposed a rectangular implementation that
uses n cells less for an n x n matrix but computes the LU factors
faster than the above method. The speed is accomplished by utiliz-
ing more cells for computation at any given time. This method 1is
different from the systolic array because interface latches are used
to store intermediate results instead of using registers in cells.
As a result, synchronization of' data is very crucial ia systolic
arrays whereas data can be stored in the latches in the Hwang method.
The interconmections and inputs of this topology are as shown in Fig.
6. The number of cells needed by the 4 x 4 full matrix is 12, which

is less than the regular systolic array.

2.3.1.1. Advantages of Systolic Arrays

The systolic cell maximizes the use of input data fetched from
memory with modest I/O bandwidths for outside communication with the
host, This is done by inputting data at the appropriate cell at a
regular rate and then gshifting the data to the appropriate processor
for computation. Thus, no multiple memory access of the same data is
needed and no additiomal complex address calculations are required to
retrieve data. VWhen the memory speed is larger than the cell speed,

two-dimensionsl systolic arrays are used because at each cell cycle,
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all the I/0 ports on array boundaries can be input or output data to
or from memory. Memory bandwidth can be fully utilized and substan—
tislly reduces processor—memory traffic (memory access bottlemeck) inm

comparison to that required in other architectures.

The algorithm on which the hardware of the systolic array is
based fully exploits parallel-pipelined processing and speeds up
comput e—~bound computations, Multiproéebsing many results in parallel
is achieved by converting the output (Aout) as imput (Ain) to the
next cell, and computation of each single result within the cell is
also pipelined. Thus the systolic cell is a two—stage pipeline.
System cycle time is the time of a stage of a cell and not the whole
array of cells st cycle time. Very fast computition, up to 200 Mflops

(million floating point operations per second) [3], can be achieved.

The cells are also simple and identical. The cell can basically
consist of shift registers or latches, a multiplier, a reciprocator

and an accumulator. A local memory may also be included to store

intermediate operands and results. Data and control flows are simple

and regular as shown in the Kai Hwang [6] systolic array.

The design of the systolic cell is completely modunlar and X

' SO

expandable with no difficult synchronmization. Additional cells can " .
be connected together in the same topology for larger matrices. In

fact, as the number of cells expands, system cost and performance :

increase proportionally if the size of the underlying problem is suf-

ficiently large.
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. One other advantage of specisl purpose machines over general
purpose machines is that the software overhead associated with opera-

tions, such as indexing, are totally eliminated.

- 2.3.1.2. Digadvantages of Systolic Arrays

Global synchromization, however, could be a disadvantage as the

size of the array increases. While an asynchronous model incurs a

fixed time delay overhead due to the handshaking process, the syn
chronous time delay 1is primarily dne to the clock skew which
k increases with the size of the array., Even in an H-tree clock dis- -
tribution [8] which maintains the same on—chip clock line length to ;;jl‘
-4
eack of the N x N modules, the clock skew grows at a rate of o(N) .
i In addition, the systolic arrays are rather inflexible to changes in :
the algorithm, for example, the partitioning of sparse matrices into :
)

block diagonal form for higher concurrency may lead to imtercomnec-

' tion hardware that is extremely complex to design, whereas solving

the huge sparse matrices using unpartitioned matrix systolic opera-

tion is a waste of processor and waste of computation time as most

k]
pr—

= elements are 2zero elements unless the matrix is banded. Even for

banded matrices, there is a limit of 4m on execution time [13].

PR RN
s 8 " .
S )

Interconnection of the submatrices of sparse matrices , if effi-
cieatly solved in hardware, may lead to special purpose machines with

very high throughput, Several schemes that are not systolic in

nature have been proposed. They are the LU unstructured sparse
matrix machine by Pottle [7], partitioned matrix by Hwang and Cheng

[10] and the Blossom System by Sangiovanni~Vincentelli [1].




2.3.1.3.

Timing Analysis and Number of Processors

Four schemes used for LU factorization are considered:

1. Regular LU banded matrix

Decomposition: T = 3n + min(r,s); N= rs

Triangularization: T = 3n; N = (a2 + n)/2

2. LU unstructured sparse matrix by Pottle

T= n1; N >= dmax

3. Partitioned matrix algorithm by Hwang and Cheng

T = 0(an) or O(n/m); N= O(n) or O(Nm)

4, Blossom by Sangiovanni-Vincenteli

T = O(n/x) for full matrices, else O(Nwh); N = x

where,
T is
N is

nis

the time complexity
the number of processors

the maximom size of the matrix

r+s-1 is the bandwidth of a banded matrix

r is

s is

1 is

mis

w is

h is

dmax

The

involves

the width of the first row of the banded matrix
the length of the first columm of the banded matrix
the mean degree of columns of a sparse matrix
submatrix size

the original border width

s function of x snd m

is the maximum nomber of nonzeros in any row of the operand

hardware suggested by Pottle [7] is difficult to design and

a great deal of control signals and local storage. More-

1A

-
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over, there is not enough information on the processor array used in
the Blossom system [1]. However, the systolic array and the Hwang
[6] scheme are easy to control and to design. The systolic array is
more suitable for banded matrices while the Hwang [6] scheme is
better suited for full matrices. However, in our applications, the
matrix is assumed to be partitiomed into submatrices so that each

submatrix is nearly a full matrix.

2.3.2. Yavefront Array Processor Architecture

The wavefront array processor (WAP) is configured in a square
array of NxN processing elements with regular and local interconnec-
tions (Fig.7). The computing network serves as a (data) wave-
propagating medium. The computational sequence starts with ome ele~
ment and propagates through the processor array, closely resembling a
physical wave phenomenon. A second wavefront can then be pipelined
immediately after the first ome propagates. Also, wavefronts of two
successive recursions of the software 1loop will never intersect
(Buygen’s Wavefront Principle) [13] because the processors executing
the recursions at any given instant will be different, thus avoidiag

any contention problems,

Accordini to S.Y. Kung [13], a wavefront array is a computing
network which possesses the following properties:
1, Self-Timed, Data-Driven Computation: The network is data—-driven,
i.e., the computation is fired as soon as the data arrives; thus, no
global clock is needed.

2. Modularity and Local Interconnection: This property is the same
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ss the systolic array, except that the wavefront array can be
extended indefinitely without global synchronization problems.

3. O(n) Speedup and Pipelinability: similar to the systolic array.

Thus, the only major difference between the wavefront and sys
tolic array is the data-driven property. Therefore, temporal local-
ity is no longei needed in the wavefront array and thus the wavefront

array is faster and easier to program.

To perform LU factorization, each recursion consists of a main
wavef ront and an alternate wavefront. The main wavefront computes Li
at the (®,i) processors and sends it left to form the columns of L in
the left memory modules. It also computes Ui at th- (1,*) processors
and sends it up to form the rows of U, The '*’ means all the ele-
ments in a8 particular row or column indicated. In the interior pro—
cessors, Ai = A(i-1) - Li *# Ui is computed. The main wavefront must
also send the new Ai’'s up. The alternate wavefront sends Aij down
and left, After the first pair of wavefronts is initiated, the

second pair can be pipelined immediately.

2.3.2.1. Advantages and Disadvantages of Wavefront Array Proces—

$Ors

The WAP has the advantage of the systolic array in the fact that
it 1is very modular and with local interconnection. However, a wave-
front architecture can also provide asynchrooous waiting capability

and consequently can cope with timing uncertainties suchk as local

clocking, random delay in communications and fluctustions of comput-
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ing times, Thus, the notion lends itself to s (asynchromous) data- .
flow computing structure that conforms well with the constraints of

VLSI.

The wavefront notion drastically reduces the complexity im the
description of parallel algorithms. The mechanism provided for this
description is a special-purpose, wavefroant oriented language.
Rather than requiring a program for each processor in the array, this
language allows the programmer to address an entire froat of proces—
sors. This solves the problem of programmability and extensibility -

of systolic arrays. .

» The WAP shares a key concept with data-flow machines: the

l arrival of dsta fires each processing element (PE), which subse—
E quently sends relevant data to the next PE. The WAP can be regarded R
E as a homogeneous data-flow processing element. The 'WAIT' for data :

feature, provided by handshaking, allows for the globally asynchro-

w1y

b nous operation of processors, i.e., there is no need for global synm

chronization, Scheduling and synchronization are built at the

hardware level. These qualities make the WAP very appealing for VLSI

implementation as well, Figs.8 and 9 show the difference between
synchronous and asynchronous handshaking, Fig. 10 shows the delay
modules for two adjacent asynchronous modules. The loop delay, dA,
is the time delay between servicing successive data bits for the
asynchronous architecture. It is given by [8]:

s dA = 2dL + dF + dP

where dL = propagation delay of the combinational logic




Fig. 8.

Crossbar interconnection network using asynchronous
modules [8].
logic 1 data.

RO is used for logic O data and R1 for
A is the acknowledge signal.
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dF = propagation delay of the feedback path
dP = propagation delay along the request path from
module i to module j
However, the synchronous delay module as shown in Fig. 11 is given
by:
dS = dL + 24dM + dP + dC

where dM = propagation delay of the memory elements
and dC = deci - dcj = clock skew
Thus for large dP, the synchronous system data rate is higher than -
that of the asynchronous system whereas as the clock skew is

increased, the asynchronous system is better.

In conclusion, the WAP is an optimal tradeoff between globally
synchronized and dedicated systolic array and general purpose data-
flow multiprocessor. The Hwang (rectangular) configuration of the
systolic array is analogous to the WAP ., The difference is that
input data is synchronously fed into the array in the Hwang implemen-—
tation whereas in the WAP, the network is data-driven, However, the
asynchronous handshaking and the wavefront language based programming -—
control can be implemented for this rectangnlar systolic array.
Thus, the rectangular configuration is chosen for analysis of the LU
factorization of both normal bordered block diagonal form (BBDF) and
nested BBDF matrices., This “hesis describes the design of a parallel
processor array for LU factorization by modifying and combining the -
traditional systolic array, the Hwang implementation and the wave-

front array processor, This modified design has the characteristic
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of the systolic array because within each 1level of the processor
array, the data are fed in a synchronous manner, each beat being con
trolled by a system clock. The Hwang implementation of the interface
latches are used because more processing elements are then utilized
for computation. In addition, the asynchronous handshaking scheme is
very useful for taking care of the irregularity of the outputs from
the previous processing level. The asynchronous handshaking oanly
needs to take place at the cells located at the edge of the processor
array where the input data are fed. The software program can gen-
erate an input data valid flag to start the wavefront of input data
at each clock pulse. | The Appendix gives the VLSI design of such a
semi-synchronous processing element, It is semi-synchronous because
it has both a system clock and asynchronous handshaking signals. The
asynchronous handshaking is basically needed as the outputs of a cer—
tain level of processor array flows as inputs to the mnext level.
This is becaunse the processing elements may not produce the outputs

in the pattern needed as inputs to the subsequent levels.
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! CHAPTER 3

L‘_ ARCHITECIURE FOR LU FACTORIZATION OF PARTITIONED SYSIEMS

3.1. Characteristics of the Matrices

b Most of the matrices in circuit simulation programs are large
and sparse. Each node in the circuit is connected to a mmall subset

of nodes, Thus, the circuits can usually be ordered into Bordered-

v

Block Diagonal Form (BBDF) [5].

L
M1 0 0 0 Yl I1 Y1
0 e 0 0 Y2¢ X2 . Y2
. 0 0 0 Mk Yke Xk x
; Yol Y2 0 Yek | Yee Ve Ic
n
- Parallel processing can be utilized by finding the LU factors of
all the subcircuits at the same time and then the results are
~ automatically merged properly together to form the interconnection :j
level. The following matrices are then factored in parallel:
% M Yie | | 1 Y20 | eeee.. [Mx Tre S

Ycl 0 Ycz 0 LR BB 1 YCk o

As discussed in the previous sectiom, a systolic approach can be ’_::
used in the architecture. Two implementations of the mesh connmec-

tion are studied: the Hexagonal systolic array by Kungl4]l and the




T

36

rectangular network by Hwang [6]. It is found, using hand simula-
tions, that the Hwang [6] scheme takes advantage of maximum processor
utilization as well as taking fewer clock cycles for processing the
matrix. The hexagonal systolic array can also be described as a rec-
tangular array. However, the difference between the Hwang [6] method
and the regular systolic array is in the use of interface latches in
the Hwang [6] method so that the timing is different between the two.
A modified scheme of these two methods is studied in the next sec-—

tion,

The psrtitioned matrix is better suited for parallel processing
than the bsnded matrix., It can be seen from a comparison of the time
it takes a regular systolic array to compute the LU factors of a
banded matrix and a BBDF matrix (Fig. 12). As p and q gets <{ an and
as m gets larger, t(partitioned) ¢ t(bundedl. Using the systolic
array by H.T. Kung [4],

t(band) = 3a + min (p,q) ~3n + p
Assume q is either larger or equal to p.

t(partitioned) ¢ t(sub) + t(int)

t(sub) = 4[p+omp]

t(int) <= 4(n-mp)
Assume summation level is done almost simultaneously. Also, assume a
full matrix at the interconnection, whereas most of the time, the
interconnection can be ordered ss s band matrix.

t(part) = 4[p+omp+o-mp] = 4[p+2n-2mp]

One of the problems is to find the optimal number (m) of subcircuits
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-
to divide the entire circuit, <
For t(band) >= t(partitioned) <
3n+p )= 8o-8mptdép
(8m-3)p >= 5n '
Thus for the partitioned matrixz to be faster than the band matrix,
{ make p and m large.
iF If the interconnection subcircuit is s band matrix, each border node
E; depends only on w nodes (Fig., 13).
- t(sub) = 4lp+v] -
" t(int) = 3[n-mpl+r
t{part) ¢ t(sub) + t(int) = 4(p+w) + 3(n-mp) + r
h ) t(band) = 3n+p -
- For t(band) >= t(part) B
E 3n+p )= 4(ptw) + 3(n-mp) + r Ei
. 3p(mr-1) >= 4w + ¢ -
For example, given r=1, p=2, w=l I
m >=-5/6+1 e.g. m = 2,3,4,....
However, the problem with the normal BBDF form of matrices |is -
that the interconnection matrix and the border can get very large and :y
sparse, Then, the control of data from the subcircuits to the inter— E;
connection level can be very complicated. Thus, an algorithm for
partitioning the matrix is investigated., The algorithm uses a clus- iE

tering procedure to obtain a ’‘nested’ partitioned matrix form. The

| 49"
resson that the clustering algorithm can be useful is that most cir- i
cueits considered are only connected to a few other nodes. So one can '}",
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always divide the whole circuit into subcircuits which are connected

only through a relatively small number of intercomnmection nodes.

The matrix is divided into BBDF in a nested manmer, starting

with 2 submatrices, then 22 matrices up to 2d matrices. Each subma-
trix is also in BBDF. This method is used to simplify the intercon
nection 1level 1logic. With the original BBDF, the border can get
very large but sparse. To utilize the sparsity maximally requires
very complicated and sometimes irregular timing controls., However,
using a nested algorithm, even though more mesh layers may be needed,

the synchronization of data is very simple.

3.2. The Nested Clustering Algorithm .

The problem with any heﬁristic clustering algorithm is the
uneven size of the subcircuits. This can be remedied by patching the
circuits with 1’s on the diagonal and zeros everywhere on the extra
rows and columns (Fig.14). The tearing nodes chosen may not be the
minimun and may not give the most identical number of clusters since
a certain small number, & , has to be chosen around the vicinity of
mmax allowed for each level of nesting, The clustering algorithm is
performed by the following procedure, and is a modification of the
algorithm given in [14]:

1. Choose initial iterating node [IS(1)] with minimum degree.
2. Store in adjacency set [AS(1)] all nodes that are adjacent to the

node in IS(1).

3. Plice the cardinality of AS(1) im ON(1).

e




Fig. 14.
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Changing the size of matrices by adding 1’s and 0's.
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4. Let i=1,

5. If ON(i)=0, check if any node is not covered yet. If all the nodes
are considered, stop; otherwise, continue.

6. Choose next iterating node, n(i+1l), from AS(i) and place it in
IS(i+1) by a greedy strategy with minimum ON(i+l1).

7. Update AS(i+1) from AS(i) by deleting the node n(i+l) and adding
all new nodes that are adjacent to n(i+l) that are not already in
AS(i) or in the union of the sets IS(j) where j equals 1 to i.

8. Put ON(i+1) = |AS(i+1)].

9. let i= i+1,

10. Go to step 5 until /2] nodes have been selected. Then choose
the node, k, between mmax + s that gives the minimom O(N. & is the
smallest integer that can give the minimum C(N. All nodes 1 -> k form
a cluster with all the nodes in the adjacency set as tearing nodes.
11. Now for the first cluster, divide the cluster in half agaian as
in step 10. Repeat step 11 until the clusters are at a nini;un size.
12, Also, delete the first cluster and its tearing nodes and con
tinne steps (6) to (10) for the second cluster. Repeat step (11)

until the clusters are at a minimaum size.

Refer to Figs. 15a, 15b, and 16 for an illustration of the aigo-
rithm, The clustering slgorithm is s software solution to organizing
the interconnection nodes in groups before processing through the

processor array. Using the nested BBDF, more parallel processing can

be done with simpler interconnection, as is shown next.
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Fig. 15a. The nested clustering algorithm splits the entire circuit
in half in the first step.
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Fig. 15b. Then each individual cluster is furthur split in half
during the next recursion,
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No. 15 _ps Gn -
1 1 2,5 2 -
2 2 5,36 3 ,
| 3 5 3,6,9 3
| 4 3 6,947 4
| 5 6 9,47,10 4
6 9 4,7,10,13 4 .
7 4 7.10,13,8 4 Bottieneck Nodes {7,10,13,8] .
8 7 10,13,8, 11 4
9 10 13,8, 11,14 4
10 13 8111417 4
11 8 11,14,17,12 4
12 11 14,17,12, 15 4
13 14 17,12,15,18 4 -
14 17 12, 15, 18, 21 4 '
s 12 151821 16 4 Bottleneck Nodes [15,18,21,16]
16 25 28,29 2 ‘
17 26 29,22, 30,27 4
18 29 22, 30,27 3
19 22 30,27,23 3 -
20 30 27,23, 31 3 o
21 27 23,3128 3 Bottleneck Nodes {23,31,28] .
22 23 31,28,24,19 4 o
23 31 28,2419, 32 4 e
24 28 24.19.32 3 -
25 24 19,3220 3 L
26 19 32 20 2 D
27 32 20 1 3
28 20 0 ;
o
Fig. 16. Example of the nested clustering algorithm being used on J
8 grid circumit, ::‘ ;
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3.3. Degign of the Modified Systolic Array

The hexagonal systolic array is orgranized in a honeycomb shaped
mesh, Its topology can actually be implemented in a rectangle. The
. data flow of such a rectangular systolic array will still be the same
as the hexagonal topology. The four diagrams shown in Fig.17 [13]
illustrate the data flow of such a systolic array. Input data is fed
slong the diagonals of the matrix. The L factors are then taken from
the left-hand edge of the network while the U factors are taken from
the right-hand edge of the network. For the given 30 x 30 nested
BBDF matrix, the input timings are shown in Fig.18. The numbers
indicate the time that the input data at the corresponding position
are fed, o.g., element (1,1) is fed at time tl” The output timings

are shown in Fig. 19, The numbers indicate the time that the output

comes out of the processor array.

The inputs are fed along the diagonal of the matrix with the
diagonal element first, followed by the rest of the elements along
the diagonal. Zeros are fed in at the location of the interconnection
level at each of the subcircuits., After all the subcircuit data-
independent elements are fed into the array, the rest of the zeros
are fed in with all the diagonal elements at the same time. Note
that the input data streams are separated from each other by a clock
pul se. At the intercomnmection location, the partial sums, } Lik *

Ukj are carried out.

To insure the correct timing, an asynchronous handshaking scheme

is incorporated om top of the synchronous data sequencing., No
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Fig. 17. Four steps during the LU-decomposition of the matrix
shown in Fig. 5 [13].
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Input timing for LU decomposition using systolic arrays.




Fuod v m. 9

e P TR T Tw T Te T TR T TR

910
10 1

13 14
15 19

910
10 13

13 14
16 19

13 16‘13 16
14 1914 1
]

4 26
6 29

77 2010 7‘229 32
18 23|18 2330 35

17 20{27 20429 3
18 23[28 23

30 354

I
|
|
I
|
I
I
I
I
I
|

— — — A — —— A————— —

9 10| 131
10 1 16 1

910 131
1013 1161

1316113 16 {24 26
14 1911419 29

910
10 13

17 18J21 22
20 23§24 27

13 16,
14 19

172&17 20 F932117201720293

18 23018 23 |30 35|18 23118 23430 3

21 24[212 36 |21 24{21 24§33 36 1 24{21 24 133 36§21 24§21 24433 36
22 27122 27834 39 122 27122 27134 39444 422 27122 27 134 39§22 27{22 27|34 39

Fig. 19. Output timing for LU decomposition using systolic arrays.
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computation, i.e., multiplication and addition, is done until the v
input data, A, L and U, have their input valid flags on. This dis :i
tinguishes the normally zero input data eclements from the ones at the ‘
r interconnection location. Also, the partial sums > L*U are takenm out .
t at different points on the network following a certain pattern. They
| are then fed into modu;es which add up all the partial sums from the
! different parallel subcircuits. The nmmber of interconnection levels ?2
{ depends on the depth of the nested BBDF, Fig. 20 shows the overall V
: configuration of the LU factorization network. -‘ ;;
{ The number of processors used are: )
é Basic Level: (m + de1)?
' Interconnect 1: (m + (d-1)*i)2 T:
. |
! Interconnect 2: (m + (d-2)%1)2 if 3
1 =0
Interconnect d: (m + i)2 ) 1
-
i = size of interconnection network (border) =
d = depth of the nested BBDF
m = size of the subcircuits
n |
Hwang’s scheme for LU factorization is also modified and then -
f applied to thq nested BBDF matrix. Both LU decomposition and forward oo
é substitution are very easily combined together into the same mesh S
{ connectoed network. The configuration and the input-output timings E
E for a 4 x 4 matrix are shown in Fig. 21. 1_
To solve A= LU and Lz = y, the y vector is put in as an extra .8

column in the A matrix., Then the elements of the matrix are fed iato

the array, one column at a time. A ‘1’ is fed in at the diagonal
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Fig. 20. System configuration using systolic arrays.
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Inputs: % o 0 0 . apy agy 3, a3,
t 0 0 0 0 1 0 0 0 .
4 0 0 0 a2 a2 332 a4 O L
1, 0 0 0 0 1 0 0 0 R
tg 0 0 a3 354 33 343 0 0 .
tg 0 0 0 0 1 0 0 ) . P
3] 0 LW 3344 334 344 0 0 0 -—
tg 0 0 0 0 1 0 0 0
ty Y1 Y2 Y3 Ya 0 0 0 0 -~
Cutputs: o
U1 U, U3 U4 US ' time l L L-_\ Ll
- -
Uy 0 0 0 0 t 0 0 0 =
1 Urq 0 0 0 tg '21 I3 lasy
Uz, 0 U, 0 0 T 0 0 g .
L Uz Y Uia 0 I3 I32 ls2 : ::_ |
Ug; 0 Uz‘ 0 z. t; 0 0 .
1 Usa 0 2, 0 o lag 0 0
Usa 0 23 0 0 IS 0 0 0 .
0 2 0 0 0 ha | O 0 0
A=Lu3na L=lz=y
Fig. 21. LU decomposition and forward substitution using the
modified Hwang method on a 4 x 4 full matrix,
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input position every other clock pulse so that a delay can be put in
between two input columns without the elements being changed in the
ne twork. The L factors then come out on the upper edge and the U
factors from the left edge. Asynchronous handshaking is also applied
here, except that the partial sums are taken out right before they
enter the division cells on the top row and along the U omntput
latches on the 1left edge. The partial sums of all the subcircuits
within each level are then added to the matrix input elements. The
results are the inputs to the next level. The dark lines in between
the cells are interface latches ‘to hold inputs and outputs uatil the
next clock pulse asarrives, Note also that the system clock must be
long enough to accommodate for the time it takes to do the computa-
tion or the time it takes to shift the imput data to the output. The

input and output timings for a 30 x 30 nested BBDF matrix are shown

in Figs. 22 and 23, respectively.

For each mesh connected array for LU decompostion (Kai Hwang([10]):

Number of required arithmetic cells = n2 - a

Number of I/O terminal = 4n - 2

Startup time delay(time delay to get the first output) = n -1
Array net compute time = 2n - 1

Total compute time = 3n - 2

If forward substitution is included in the same processor array,
together with LU decomposition, the following modifications occur.

For esch mesh connected array:

Number of required arithmetic cells = (n+l1) (n-1)
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Fig. 22. Input timing for LU decomposition and forward substitution

using the modified Hwang method.
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Fig. 23. Output timing for LU decomposition and forward
substitution using the modified Hwang method. N
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Number of I/0 terminal = 4n - 1
Startup time delay = n
array net compute time = 2n

Total compute time = 3n

The system configuration is shown in Fig. 24 and the interconm
nection for &8 7 x 5 array to s S x 3 array is shown in Fig. 2§.
Backward substitution uses a linear systolic array (Fig. 26). Sol u-
tions are obtained from the bottom of the matrix up to the top.
Also, the fifst computation can only be dome after the solutions of
the forward substitution are obtained. The input and output timings

are given in Fig. 27.

From the results, it can be concluded that the input and output
timings of this modified systolic scheme are more regular and easier
to control than the hexagonal systolic array. Also, fewer processors
and less time are needed to accomplish both LU decomposition and for-
ward substitution., Thus, in the following section the modified Hwang

implementation is studied for its performance time.
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Fig. 24. Processor array configuration for the example nested
matrix,
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Fig. 26. Linear processor array for backward substitution (Ux=z).
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Fig. 27. Backward substitution pipeline (Ux=z) input and output
p timings.
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3.4. Performance Evaluation

K

Timing Analysis of the Nested Algorithm using the modified Hwang

o
EEEN

implementation for the example nested matrix:

r Time =
Start Input Get LU factors Goet first z 'j

®

Basic Level 131 dxi+p = pl t1+2p1 1
Interconnect 1| 3p1-2(dxi)+2 t(intl)+(d-1)xi+i| t(intl)+2p2 1

L = t(iatl) (d-1)xi+i = p2 "3{
Interconnect 2 | t(intl)+3p2-2(d-1)i+2 | t(int2)+(d-2)xi+i| t(int2)+2p3-1 ‘:

= t(int2) (d-2)xi+i = p3

i Interconnect 3 | t(int2)+3p3-2(d-2)i+2 | t(int3)+i t(int3)+2i-1 fjj
. = t(int3)
. T(LU+FWD) = 3 (d%i + p) + 5i + 6 =
- n=2% 34+ dxi 2
Backward substitution = 3 ¢ 24 - 1

. Total time = 3*(d*i + p) + 5i + 5§ + 324 j
Assume processors are very cheap so that the computation time is

the main consideration of performance. Note that this network can

compute LU factorization in O(n) time. It is thus a very efficient :'ji

processing array for LU factorization. ‘]‘

; 2]
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CHAPTER 4 ‘e
DIRECT METHOD - OVERALL SYSTEM CONFIGURATION

There are two main methods for solving large systems of linear

equations, the direct and the indirect method. The direct method, as

the name implies, feeds the entire matrix into the processor array in

one pass, and solves the system of linear equations. The indirect

method will be discussed in the next chapter,

The system for the direct method of LU factorization consists of

the host interface, the main memory(MM), a control unit(CU), the
memory management unit(MMU), the sequencer unit(SU), the feedback =
buffer(FB), the input processor switch (IPS) and the processor -
array(PA). The block diagram of the system is shown in Fig. 28. :i
The host interface communicates with the host computer to get ey

the commands and data to process the LU factorization operation. The

ii matrices are first reordered by reordering programs implementing the
3 nested clustering algorithm in the host computer. The matrices are -
F then represented in partitioned bordered block diagonal form. The i{
non—-zero values are then stored with their row and column coordi- 1
N

nates. Since the amount of data is large compared to the operation

set, the control signals are embedded into the data stream. Also,

the host interface recognizes only partitioned matrices and vectors, |

80 the host provides s data separator for each submatrix and vector I

segment in the data stream. The host interface then generates a
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proper data representation each time a separator is encountered.
This dats representation and the instruction words are them sent to
the (U while data 1is sent to the main memory. The host interface
tries to allocate potentially parallel data objects into different

parts of the memory hierarchy to be fetched through different ports.

The control unit (CU) decodes the host interface instructions on
matrices into sequencer instructions on submatrices and vector seg-
ments, Thus each task requested by the host is partitioned into
several subtasks which may be carried out in parallel. Each subtask | a;
is carried out by the processor array under supervision of the
sequencer. The CU thus contains information on the number of nested

levels of paralle submatrices as well as the sizes of the subma— =

trices. The control unit also sends commands to the input processor

switch to enable and disable processors depending on the size of the

3

. -
matrix to be processed. It also controls the feedback buffer which - j
organizes the output solutions from the processor array. i

The memory management unit (MMU) manages the main memory system.
A virtual addressing scheme is used because the amount of data of ‘ 1
each operand matrix can be very large. The operand address received

from the (U is the starting virtual address of a submatrix or vector

segment., The MMU computes the ending virtual address from it and
translates both virtual addresses to physical addresses. The MMU is
required to fetch data for concurrent tasks from the multiport
memory. The host interface would try to allocate potentially paral-

lel data objects into different parts of the memory hierarchy to be
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fetched through different ports.

The sequencer unit (SU) adds different delays to dats loaded by
the MM bvefore sending them to different processor rows or columns
depending on the size of the submatrices. The delays are synchron

ized by a system clock which controls the processor array.

The input processor switch (IPS) receives instructions from the
control unit to determine which oprocessor elements are enabled
according to the size of the matrices. Then the input data are then
automatically switched from the SU to the appropriate processing ele—

ment.

The feedback buffer (FB) is used when the data output from the
processor array is re—sent to the processor array. It also arranges

the outputs in an organized fashion to be sent to the MMJ for virtual

address translation,

The processor array (PA) has been discussed in the previous
chapter. The array is controlled by instructions from the CU as
well, The processor array shown is the semi-synchronmous implementa-
tion for the nested BBDF matrices. The processor array is comprised
of planes of processing elements; each subsequent plane takes care
of the intetc;omction between two previously parallel arrays for LU
factorization and forward substitution, The results are then fed

into processing elements used for backward substitution,

This chapter gives the general description of ecach of the blocks

in the special purpose machines used for LU factorization in the
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direct method. The details of these blocks still need to be .

designed. o~
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An alternative method for solving large systems of linear equa-

tions is an indirect method, such as the Gauss—Seidel [16] relaxation
method. Special purpose hardware can also be bduilt to accomplish

this algorithm instead of having it done in sof tware.

The block diagram of such s system is shown in Fig., 29. The
indirect method first makes a guess on the values of the interconmec-
tion nodes. The partitioned submatrices from 1 to k can themn be
evaluated using LU decomposition, forward and backward substitution.
The nested clustering algorithm for partitioning matrices is no
longer needed. The matrix can be partitioned in normal BBDF form.
The following equations are solved in parallel:

Ly 20D 2y =5 - By * x,

(Ly *Tp) xp =53 - B * 1y
where x is the initial guess. Then, the solutions x; to x, are wused

to compute the values of the interconmection node.

-k T
(Lt‘Ut)xt =yt - 2541 Pi° X4

After the aew values of the intercommection node are computed, they

are compared to the previous guess. If the solutions are off by more

S ML
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Fig. 29. Block diagram for the indirect method hardware. ) '
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than the tolerance allowed, then the new xt'; are used to re—evaluate

the values of T, to x; until the solutions comverge. Latency can be
explored if some of the values of Xy to x; are within the tolerance

allowed.

The difference between the imdirect and the direct method is
that the submatrices are completely decoupled from each other in the

indirect method because an initial guess for the values of X, the

interconnection node values, is made. Since each submatrix is con—
nected to another solely by the interconnection nodes, decoupling as
a result of guesses, solves the problem of the complexity of control-
ling the interconmection. However, vector multipliers and subtrac-
tors must be added to tompute the solutioms ., A prodessing el ement
for LU decomposition can be used to find vy - Pi * x,, whereas a for-

ward substitution array made of the same processing elements can be

T

-k
used to obtain Ve - Zi-l P, . x;. In addition, a comparator must be

used to compare the values of z, with the previous iteration to check

for convergence.

The direct and indirect method have differeant applications. If
the circuit is approximated with a simplified model, e.g., in RELAX
and SPLICE, the indirect method is faster because the solutions con-
verge quickly. However, there are inaccuracies in the solutions. 1In
most cases, these inaccuracies are trivial., The indirect method com
verges quickly for circuits with very few couplings. However, if a

detailed model of the circuit or some complex circuits such as analog
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circuits or digital circuits with parasitics, are to be analyzed,
then the direct method , e.g., the one used in SPICE [18], is faster
and more accurate. Using the indirect method for this application
may lead to solutions that do mot comverge. Thus, both the direct
and indirect method are used depending on the types of circuits to be

solved.
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CHAPIER 6

This thesis is a preliminary investigation into a computer
architecture to be wused for solving large systems of partitionmed
sparse matrices repesenting the coannections of electrical circuits.
A highly concurrent parallel architecture is proposed. It is
expected to be a powerful tool which is aimed at speeding up the LU

factorization of these matrices in order to solve the equations,

A special purpose architecture is chosen over a general purpose
architecture. There are many advantages and disadvantages of both
types of architectures. However, in spite of the inextensibility of
the special purpose architecture, the special purpose architecture is
simpler to design and is sufficieant for our application. This type
of architecture can offer a faster speedup because no time is wasted
in decoding instructions. Three different types of special purpose
array processors have been studied and compared: the systolic array,

the Hwang processor array sad the wavefront array processors.

In order - to achieve maximum concurrency, the matrix is best
ordered in a nested bordered block disgonal form. A modified clus-
tering algorithm is presented based on a heuristic method of ordering
these sparse matrices. However, using this algorithm, the nmmber of

clusters (or submatrices) that result are always in powers of two.

The LU factors at the borders of these nested BBDF matrices are

LT e T T W W W N TR Y A e YT Ty Ty T ey T LT
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easier to solve than the normal BBDF. This is because the intercon
nection nodes are also decoupled using this method, thus making the
borders of the submatrices a small size. Separate processor sarrays
can be used to evaluate the LU factors as well as performing the for-
ward substitaution of all the submatrices at the lowe;t level. The
results of two different submatrices can then be summed together and
become input to the interconnection processor array in the next level
until the entire matrix is computed. Backward substitution can then

be applied to the resulting matrix.

In order to facilitate VLSI implementation to reduce cost and
computation time as well as to simplify control, a highly modular
computing structure with local communications is probably the best
strategy. All of the three processor arrays mentioned above, namely,
the systolic array, the Hwang processor array and the wavefront array
processors have these properties. The systolic array uses a synchro-
nous data flow. The processing elements are all identical with local
interconnections. The Hwang processor array uses latches at the
border to latch inputs. The wavefront array processors use an asyn
chronous handshaking scheme for local communications. The syanchro—
nous scheme creates problems as the clock skew grows due to the
increase in the size of the processor array. However, the asynchro-
nous scheme may csuse race conditions and data conflicts if the data
is not synchromnized correctly. The Hwang processor array makes max-

imum use of processors; however, latches must be used at the border.

This destroys part of the simplicity and regularity of the data conm
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trol. To compromise between all the tradeoffs of these architec—
tures, 8 modified scheme is designed to incorporate the characteris—
tics of all these types of processor arrays, The processor array
proposed wuses a synchronous data flow to input and output data at
each submatrix. A system clock is used to synchronize the data.
However, certain handshaking signals (input and output valid flags)
are also used so that the computations will not be done unless these
flags are present. This scheme essentially adds in wait states and
is useful when the outputs flow from ome level to the next intercom
nection level, Several problems , however, may arise. Race condi-
tions an; confli;ts may occur. The data must be able to be 1latched
in each oprocessing element long enough before all the valid signals

are present. Also, the input data must be momitored so that data

will not be overwritten while waiting for the valid signals.

The Hwang VLSI structures are also included in the processor
arrasy because latches are used to dbuffer the data instead of using
registers inside the processing elements, 'This implementation offers
maximum processor utilization. In addition, the inputs are fed in
column by column and are thus easily controlled. The processor array
proposed can solve LU decomposition and forward substitution in O(a)
time, Backward substitution is implemented by a linear array which

can also compute in O(n) time.

There are two methods for solving a large system of linear

equations, the direct method and the indirect method. The direct

method solves the entire matrix in one pass. The indirect method
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guesses at the values of the interconnection nodes initially to solve
for the rest of the circuit. Then the values of the interconnection
nodes are updated and the whole process is repeated until the solu-
tions converge. It is still unclear which method is asctuslly better
in terms of speed. The performance of the indirect method depends on
how good the initial guess is so that the solutions comnverge quickly
provided they converge. A general description of the overall system
configuration of both methods has been given. This thesis deals with
the processof array in detail., The design of a single processor ele-
ment is also given in the Appendix. However, the hardware and the
sof tware controls of the rest of the system have yet to be designed

in detail,

A simulator will be written to simulate the data flow between
all submatrices and their intercommection levels. The results from
this simulator give the time when data is input and output at all the
processing elements. These results are useful for momitoring the
control of the data for any size of matrix. A hardware descriptive
language [17], which implements the basic instruction set needed to
control the processing elements, must be defined. The 1language «can
be similar to the wavefront—oriented language by S.Y.Kung [13], but
it should be more special purpose and simple to design. Another
simulator can then be written to describe the subroutines used to
synchronize the processing elements. This simulator describes the
sequence of instructions that each processing element recieves, Data

can be fetched from and flowed to any adjacent cells in the up, down,

._‘
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left or right directions, Conflicts and deadlocks can be avoided
[17] if every occurrence of a8 FLOW {to directiond> instruction of a
datas sourcing PE is matched by an occurrence of a FETCH {from oppo-
site direction) instruction in the instruction sequence of the
appropriate recieving PE, i.e., every FLOW is matched both in number
of occurrences and sequencing of eppearance to a FET(H in the same
phase. Data bus contention problems must also be solved. The nested
clustering algorithm can also be implemented to reorder the input

matrices. Uneven depths of clusters can be incorporated as well.

In terms of hardware, the processor arrays can be designed so
that they can deal with matrices of any arbitrary size, either larger
or smaller than the hardware can sccommodate. Larger matrices need
to be partitioned into smaller matrices while smaller matrices are
patched with 1's in the diagonal and 0O's in the rest of the rows and
columns, Once the software is finished, the details of all the other
blocks in the system configuration canmn be implemented. A floating
point processing element can be designed in (MOS so that the array
can be used for circuit simulation, The OM0S cell will contain 24
bits for the mantissa and 8 bits for the exponeat. Local memory,
e.g8., a RAM, can be added into each processing element. This reduces

the memory access time and can thus yield higher performance.

Fast simulation engines can be the key to improvimg circuit

simulation time omce a good algorithm has been developed., LU factor—

ization is one of the time-consuming loops im simulation programs.
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The design of highly concurrent parallel architectures for this -
application can undoubtedly revolutionmnize circuit simulation. 'i
-
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APPENDIX: DESQRIPTION OF A PROCESSING ELEMENT ud

I. -3

.o

* 4

s A 16-bit fixed point processing element (PE) has been designed -

v -

A using a 3um OMOS VLSI technology. The PE accepts 16-bit operands, ot

- -

- with 8 bits representing the fractional part and 8 bits representing _‘-:1

the integer part. The four major functions that it performs are: f_.-:

o+l a _ m m o]

(1) Aij Ai.j Lik Ukj ]

m m n ;_»f

(2) L Ay T U, .

() D a4 ® " -

L kj Ay -

o+l m m m .

(4) Ai_-j AT * Ly + Ty )

Function (1) performs the update of the matrix elements during

~, ’ ;__.‘

i LU factorization. Function (2) solves for the L (lower triangular) .;4

factors while function (3) solves for the U (upper triangular) fac-— 1::;

tors, Function (4) is used when addition is needed at the intercon -

! nection level. | -4
‘- The cell basically consists of a fixed-point adder, a multi-

R plier, a divider, a function decode, several muxes and latches. The :-;

" pin specifications of the chip are given in Fig. 30. The functional -"3

T

block diagram of the cell is shown in Fig. 31. The cell is designed -,

‘ . B

.‘ in CMOS because of low power dissipation which is important in an ;,';

array of large numbers of processing elements, .17

7

]

The design of the cell is semi-synchronous, level sensitive and «'.:

“ combinational, It is semi-synchronous because Avian, Lvin and Uvin i-}-

"9

are flag signals to enable the computation (i.e.,, the addition and :4]
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$, ¢, VDD CY1 CY2

hS N
8 8
Lin Uin
Lvin Uvin
8
Uvout ﬁ— ——+———> Lout
Uout H——-—~ "ﬁ Lvou!
SEL1 > ————— Parity
SELg ' —————————> Overflow
ain/ag, 8
Ayin 3 [———>GND

Total Number. of Pins = 55 pins

Pin Assignment:

a:" - a(k)
- ln’put/Output Pin (8 bits)
ain=— a} Valid
— Input Pin
Uin - Uk(jk)
— lnput (8 bits)
Uyin— Uk"."’ Valid

Aout = Ain - LinUin
Lout = Ain/Uin

Uout = Ain

Aaut = Ain + Lin + Uin

— Input ®1(Ph1)
Lin = L ®1(Ph1)
— Input (8 bits) $2(Ph2)
Lua~ L Valid Cycle 1(Cy1) { Ciock Inputs
- Input Cycle 2(CY?2)
Parity — Qutput Pin

—Either Adder or Multiplier Parity
Overflow — Qutput Pin
~— Either Adder or Multiplier Qverflow

Lout
Uout | — Output Pins for Lik L&V, U,
Aout w )

Output Pins for L,L"*”,Uk""*”, and A"
Lvout High during CY2 and the valid signals
Uvout (Lvin, Uvin and Avin respectively) arc high
Avout | — Qutput Pins

Fig., 30, Pin assignment of a CMOS processing element.
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Fig. 31. Logic block diagram for the OMOS processing element.
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mul tiplication) when the system clock goes high. It is level sensi-

X

tive becasuse it responds to the logic level of the clock instead of

the clock edge. Two cycles of a two-phase clock are used for each

proey DUy WP

computation of a processing element, It is combinational because mno
feedback path exists within the cell so that a finite state machine

is not needed. ?

The inputs of A, L and U are time-multiplexed into the circuit
because of the limitations on the nmmber of I/O pins. This scheme,

however, slows down the fetching of opeéands. . The entire operation,

- a L aae .

fetching of data and computation takes two cycles. The timing
diagram of the control signals and the data 'is shown ia Fig. 32.
During the. first cycle (CYl), phase 1 latches the least significant - 1

bit LSB data (Ain, Lin, Uin, Avia, Lvia, Uvin) from the temporary

latches while the most significant bit MSB data are latched in phase

2. The LSB and MSB temporary latches are loaded in ¢1 and #2 of the

|
aiaca ey X 5. N _ T %

previous cycle 2, respectively, from the output of an identical adja—
cent processing element. Also, the input Ain and output Aout share

the same I/0 pins because of pin limitation and the fact that the

D A
b 3

next inputs are streamed from another chip at ome or more clock
cycles after the outputs are generated in this chip., Thus, no I/O e

conflicts should occur if data are properly synchronized in the pro- :

cessor array. Lin and Uin, on the other hand, cannot share the pins
with Lout and Uout because data can be input and output at the same :'~.

time during an operation,

¥
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5 Fig. 32. Timing of the control signals and the data. ::
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A domino COMOS design (Fig. 33)is used for the function decode
instead of the conventional dual NAND and NOR gates because it is
simpler to design and takes up less area. The function decode is
precharged during ¢1 and CYl and the function is evaluated when #1
snd CY1 go low, i.e., when 2 and CY1 are high, Then SEL1 and SELO
must be held at the same voltage until the next $#1 and CY1l, otherwise
the function selected will be changed during this operation. The

computation is somewhat pipelined by two differeat pipes.

If a multiply-addition (FO) is selected the multiplier outputs
are enabled dnring: $2 and CY1. As soon as the MSB of the data get
latched, the computation will be dome right before CY1 goes 1low.
Then the adder is enabled at $1 and CY2 and results are latched in
the output multiplexer (mux). The LSB of the output is generated at
#1 and CY2 and the MSB of the output at $2 and CY2, If a division is
selected (F1), the reciprocator output is emabled during $¢2 and CY1
and the results are processed during #1 and CY2. Then the results

are carried to the L latches,

No results from the adder, multiplier and reciprocator are
latched if the valid signals of all (A, L, and U) have not arrived.
After they arfive. the valid signals being passed (as output) to the

next cell are epabled during cycle 2.

Parity and overflow are both generated by the multiplier and
sdder, and when reciprocstion is done, the parity and overflow of the

multiplier is output whereas those of the adder are normally being

generated.
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Two schemes were considered for the design of the adder, a

'
L.
e
r._‘
"
.
r
E

ripple-carry and s carry—look—shead, Ripple-carry is extremely slow
because the carry has to propagate to the previous full adder before
the full adder can perform the addition. The adder onm the chip has

the following functions:

(1) Ain + Lin + Uia

(i1) Ain - Lin * Uin

Thus a three—operands to two-operands adder is put in froat of a
carry—look-ahead adder. The carry—-look—-shead adder is showa in Fig. | -

34, The parity and overflow are also generated.

The input muxes to the multiplier are enabled so that when the

fonction is FO, Uin ® Lin is performed while Uin ! » Ain is performed -
QI when the function is F1. The input muxes to the adder are enabled ;f
fz such that when the functionm is not F3, them Ain - Lin ® Uin is per- )
ﬁl formed except for F2 when the output of the adder is not used. Dur— ;;

ing F3, Ain + Lin + Uin is performed and the inputs are chosen as

- appropriate.

e
{l

The L output is valid when the function is F1 and Avin, Uvia

and Lvin are asserted and the clock cycle is cycle 2; or function is

W

not F1 and Lvin is valid and the clock cycle is cycle 2. The U out-
put is valid when function is F2 and Avin, Uvin and Lvin are asserted R
and the clock cycle is cycle two; or the function is not F2, but Uvin

and cycle 2 are high., The A output is valid when Avin and Lvian and

Uvia are high and the clock cycle is cycle 2,
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The reciprocator is based on a non—restoring division principle
[23]. The block diagram of the reciprocator and a basic cell in the
reciprocator are shown in Figs. 35 and 36, respectively. Each cell
performs the functions:

2z =x xor [a ( y xor t)]

u=(x xorb) (y+ t) + yt

The multiplier (Fig. 37) is a two’s complement combinational
array multiplier based on Booth'’s algorithm [23]. The main cell is
basically the same as the reciproca?or cell, An extra column of cell
is added to the 16_: 16 cells to generate the true sign of the par—
tial products. Also, the last cell of this column can be xor’ed with

the MSB of the 16 x 16 multiplier result to generate the overflow .

check. Hr

A two—phase clock is used with two cycles in each phase. Phase

one must be long enough for both the adder to finish addition or for ;]
the multiplier to finish multiplication and also for the output latch
to latch in the LSB. Phase two must be long enough for both the
input latch to latch the MSB or the output latch to latch the MSB and o ??

also for the reciprocator to finish calculation.

Note that the multiplier scheme using Booth's algorithm calcu-
lates in moderste speed and it takes up a lot of area. A faster mul- -
tiplier can be implemented. In addition, reciprocation and then mul-
tiplication can be replaced by just a divide using a divider so that 4
the calculation needs only go through one stage. Also, $1 can be N

shortened too. A RAM can also be added so that intermediate results

.
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can be stored in local memory and can shorten memory access time. In
addition, a ROM can also be added to store the instruction sequences

of each processing element. A floating point processing element can

be designed using the same <functional control described in this

appendix,
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